ring modes with skeletal modes is, in general, slight. Some of the ring modes show extensive mixing of symmetry coordinates of different types; thus in the E block of $Cr(\pi$ - $C_6H_6)(CO)_3$ the frequency at 1448 cm⁻¹ is best labeled ν_{19} $[\nu(CC)]$ although mixing with ν_{18} [$\beta(CH)$] at 965 cm⁻¹ is pronounced. For the deuterated compound, ν_{19} (1292 cm⁻¹) is less heavily mixed with ν_{18} (791 cm⁻¹), but ν_{18} and ν_{10} (762 cm⁻¹) are now heavily mixed. Many of the skeletal modes show contributions from more than one symmetry coordinate. In particular, the chromium-carbon stretching modes are very extensively mixed; this is to be expected as they are mechanically coupled and have similar frequencies. In both the A₁ and E blocks and with both isotopic molecules, the mixing of the chromium-carbon stretching modes is so extensive as to render meaningless descriptions in terms of either ν (Cr–C) or $\nu(Cr-C^r)$.

Acknowledgment. We thank the Science Research Council for the award of a fellowship to R.E.C. and a grant to D.C.S.

Registry No. $Cr(\pi$ -C₆H₆)(CO)₃, 12082-08-5; $Cr(\pi$ -C₆D₆)(CO)₃, 38095-88-4.

Supplementary Material Available. Further information on the details of the vibrational analysis will appear following these pages in the microfilm edition of this volume of the journal. Photocopies of the supplementary material from this paper only or microfiche (105 \times 148 mm, 24 \times reduction, negatives) containing all of the supplementary material for the papers in this issue may be obtained from the Journals Department, American Chemical Society, 1155 16th Street, N.W., Washington, D.C. 20036. Remit check or money order for \$4.50 for photocopy or \$2.50 for microfiche, referring to code number AIC40694Z.

References and Notes

- (1) M. L. H. Green, "Organometallic Compounds", Vol. 2, G. E. Coates,
- (2)
- (3) for example, p 183.
- R. G. Snyder, Spectrochim. Acta, 15, 807 (1959).
- H. Saito, Y. Kakiuti, and M. Tsutsui, Spectrochim. Acta, Part A, 23, (5)3013 (1967)
- (6) J. Brunvoll, S. J. Cyvin, and L. Schafer, J. Organomet. Chem., 27, 69, 107 (1971).
- (7) (a) S. Kjelstrup, S. J. Cyvin, J. Brunvoll, and L. Schafer, J. Organomet. Chem., 36, 137 (1972); (b) J. Brunvoll, S. J. Cyvin, and L. Schafer, ibid., 36, 143 (1972).
- (a) D. M. Adams and A. Squire, J. Chem. Soc. A, 814 (1970); (b) H. (8)P. Fritz and J. Manchot, Spectrochim. Acta, 18, 171 (1962); (c) I. J. Hyams and E. R. Lippincott, Spectrochim. Acta, 28, 1741 (1972); (d) D. M. Adams and A. Squire, J. Chem. Soc. Dalton Trans., 558 (1974).
- (9) G. Varsanyi, "Vibrational Spectra of Benzene Derivatives", Academic Press, New York, N.Y., 1969; see also ref 13.
- (10) D. M. Adams and R. G. Churchill, J. Chem. Soc. A, 697 (1970). (11) J. H. Calloman, T. M. Dunn, and I. M. Mills, Philos. Trans. R. Soc.
- London, Ser. A, 259, 499 (1966). (12) E. B. Wilson, J. C. Decius, and P. C. Cross, "Molecular Vibrations",
- McGraw-Hill, New York, N.Y., 1955, Chapter 6. (13) S. Brodersen and A. Langseth, K. Dan. Vidensk. Selsk., Mat.-Fys. Skr.,
- 1, 1 (1956); see also ref 9
- (14) J. C. Duinker and I. M. Mills, Spectrochim. Acta, Part A, 24, 417 (1968).
- (15) D. H. Whiffen, Philos. Trans. R. Soc., London, Ser. A, 248, 131 (1955).
- (16) Y. Kakiuti and T. Shimanouchi, J. Chem. Phys., 25, 6 (1956).
- (17) M. F. Bailey and L. F. Dahl, *Inorg. Chem.*, 4, 1314 (1965).
 (18) L. H. Jones, R. S. McDowell, and M. Goldblatt, *Inorg. Chem.*, 8, 2349 (1969).
- (19) D. A. Brown and R. M. Rawlinson, J. Chem. Soc. A, 1534 (1969).
- (20) R. D. Kross, V. A. Fassel, and M. Margoshes, J. Am. Chem. Soc., 78, 1332 (1956).
- (21)J. H. Schachtschneider, "Vibrational Analysis of Polyatomic Molecules" Report No. 231-64, Shell Development Co., Emeryville, Calif., 1964.

Contribution No. 2201 from the Central Research Department, Experimental Station, E. I. du Pont de Nemours and Company, Wilmington, Delaware 19898

Reactions of Ethylene Coordinated to Molybdenum, Tungsten, and Iron

W. H. KNOTH

Received October 23, 1974

Nitrogen, phosphorus, and oxygen nucleophiles, as well as cyanide ion, add to ethylene in CpMo(CO)₃C₂H₄+^{,1} CpW- $(CO)_{3}C_{2}H_{4}^{+}$, and CpFe $(CO)_{2}C_{2}H_{4}^{+}$ to form β -substituted ethylmetal derivatives. Deprotonation of cationic products containing an N-H bond, e.g., CpW(CO)₃CH₂CH₂NH₃+, leads to an insertion-cyclization reaction.

Introduction

The reactivity of coordinated olefinic ligands has been of continual interest for over a decade (see ref 2 and references therein). However, there have been relatively few studies on simple coordinated monoolefins. Recently, coordinated ethylene in $CpFe(CO)_2C_2H_4^+$ was shown to be subject to the facile addition of anionic carbon nucleophiles (L) to form CpFe(CO)₂CH₂CH₂L² and to the addition of triphenylphosphine, methylamine, and methoxide ion to form CpFe-(CO)₂CH₂CH₂PPh₃+,^{2b} CpFe(CO)₂CH₂CH₂N(H)CH₃,³ and CpFe(CO)₂CH₂CH₂OCH₃,³ respectively. In addition, ammonia and amines have been found to react with simple monoolefins in certain palladium and platinum complexes.⁴

This paper is concerned mainly with the addition of ammonia and other nucleophiles to coordinated ethylene in $CpM(CO)_{3}C_{2}H_{4}^{+}$ (M = Mo, W) and with further transformations of the reaction products. Further examples of nucleophilic additions to $CpFe(CO)_2C_2H_4^+$ are described and compared with the molybdenum and tungsten systems and some related chemistry arising from the reaction of ethylene oxide with $CpM(CO)_{3^{-}}$ (M = Wo, W) is presented.

Results and Discussion

Ammonia readily adds to ethylene in $CpFe(CO)_2C_2H_4^+$ (I), $CpMo(CO)_{3}C_{2}H_{4}$ (II), and $CpW(CO)_{3}C_{2}H_{4}$ (III). The isolated products tend to be dialkylated; e.g., [CpFe-(CO)2CH2CH2]2NH2+ (IV), [CpMo(CO)3CH2CH2]2NH2+ (V), and [CpW(CO)₃CH₂CH₂]₂NH₂+ (VI) have been obtained, although CpW(CO)₃CH₂CH₂NH₃+ (VII) has also been isolated. Most of this work involved preparation, isolation, and characterization of these cations as the hexafluorophosphate salts. Reactions of I-III with ammonia are facile and exothermic and proceed in good yield when ammonia vapor is passed over the solid salt or through an acetonitrile solution. Deprotonation of V-VII by sodium hydroxide is accompanied by a cyclization-insertion reaction as in eq 2 and 3. If the reaction of ammonia with II is run in benzene, monoalkylation

AIC40732E

Table I. Reaction Products of Ethylene Complexes with Amines and $(C_6H_5)_3P$

	Metal complex	Coreactant and product ^a						
		$\overline{C_{s}H_{s}N}$	CH ₃ NH ₂	(CH ₃) ₂ NH	(CH ₃) ₃ N	$(C_6H_5)_3P$		
	I, CpFe(CO) ₂ C ₂ H ₄ ⁺	1	3	3	1	1		
	II, $CpMo(CO)_3C_2H_4^+$	1	2	3	1	1		
	III, $CpW(CO)_{3}C_{2}H_{4}^{+}$	1	2	1,2	1	1		

^a 1 = product of type $[CpM(CO)_2 \text{ or }_3 CH_2CH_2L]^+$; 2 = product of type $[CpM(CO)_2 \text{ or }_3 CH_2CH_2]_2LH^+$; 3 = experiment not run. $CpFe(CO)_2C_2H_4^+ + 2NH_3 \rightarrow [CpFe(CO)_2C_2H_4]_2NH_2^+ + NH_4^+$ (1)

 $I \qquad IV$

 $CpW(CO)_3CH_2CH_2NH_3^+$ \longrightarrow

predominates but deprotonation is spontaneous and the isolated product is CpMo(CO)₂COCH₂CH₂NH₂ (X), the molybdenum analog of VIII. An X-ray study on X confirms the assigned structure; extensive intermolecular hydrogen bonding between the NH₂ and carbonyl groups clearly identifies the NH₂ group.⁵ The structure of VIII follows from the near identity of its infrared spectrum with that of X while the infrared spectra of IXa and IXb are nearly identical with each other and quite similar, in the appropriate regions, to those of VIII and X. Compound VIII has been prepared by Beck from CpW(CO)₃H and aziridine.⁶ The cyclization–insertion reactions involved in the formation of VIII–X are similar to those observed by King⁷ when he prepared several transition metal compounds containing a Lewis base β to an M(CO)_m group as in eq 4. Protonation of IXb by the strong acid

H₂B₁₂Cl₁₂⁸ occurs at the acyl group to give the carbene complex XI. This is inferred from the lack of an acyl C=O stretch in the infrared spectrum and from the proton NMR spectrum in pyridine which is the same as that of IXb.

The reactions of I–III with amines and triphenylphosphine are analogous to their reactions with ammonia as shown in Table I.

Deprotonation of [CpW(CO)₃CH₂CH₂]₂N(H)CH₃+ gave both a cyclization-insertion product, XII, analogous to IX,

and the simple deprotonated product [CpW-(CO)₃CH₂CH₂]₂NCH₃. The latter is converted to XII by treatment with cyanide ion.

The reversibility of the addition of a neutral ligand to ethylene in I-III depends both on the nucleophile and on the metal. The proton NMR spectrum shows that the addition of water to an acetonitrile solution of CpFe-(CO)₂CH₂CH₂NC₅H₅+ causes rapid dissociation of the pyridine with regeneration of the ethylene complex. The molybdenum and tungsten analogs are unaffected by aqueous acetonitrile but lose the pyridine when treated with hydrochloric acid. The trimethylamine adducts of I-III all decompose slowly in aqueous acetonitrile. The ammonia addition products are more stable but show the same order of stability as the pyridine adducts; i.e., [CpFe(CO)2CH2CH2]2NH2+ is unaffected by water but is rapidly converted to the ethylene complex by hydrochloric acid while the tungsten and molybdenum analogs are not affected. Refluxing a solution of [CpMo(CO)₃CH₂CH₂]₂NH₂+PF₆⁻ in an alcohol-hydrochloric acid mixture for 30 sec gave the corresponding chloride salt. Prolonged (16 hr) treatment of CpW(CO)₃C₂H₄PPh₃+ with methanolic hydrochloric acid causes cleavage of Ph₃PCH₂CH₃+.

It has been reported³ that sodium cyanide in water displaces ethylene from CpFe(CO)₂C₂H₄⁺. We confirm this but find that tetraethylammonium cyanide in acetonitrile causes only partial loss of ethylene and that the crude product contains an estimated 21% yield of CpFe(CO)₂CH₂CH₂CN.⁹ More success was achieved in the reaction of CpMo(CO)₃C₂H₄⁺ and CpFe[P(OPh₃)]₂C₂H₄⁺ with cyanide. Sodium cyanide in water caused loss of ethylene in both systems but tetraethylammonium cyanide in acetonitrile gave a 33% isolated yield of CpMo(CO)₃CH₂CH₂CN and a 69% isolated yield of CpFe[P(OPh₃)]₂CH₂CH₂CN. Treatment of the latter with hydrogen (Pd/C catalyzed) gave a low yield of propionitrile.

Although it reacts smoothly with tetraethylammonium cyanide, $CpFe[P(OPh)_3]_2C_2H_4^+$ does not add ammonia, amines, or triphenylphosphine. Presumably the greater electron density on the iron in $CpFe[P(OPh)_3]_2C_2H_4^+$ compared to $CpFe(CO)_2C_2H_4^+$ is transmitted in part to the ethylene, accounting for the decreased electrophilicity.

The possibility of effecting successive substitutions on an

ethylene ligand has been demonstrated by the series of reactions

$$CpW(CO)_{3}C_{2}H_{4}^{+} + CH_{3}NH_{2} \xrightarrow{-H^{+}} [CpW(CO)_{3}C_{2}H_{4}]_{2}NCH_{3} \xrightarrow{Ph_{3}C^{+}} CpW(CO)_{3}^{-}\pi^{-}C_{2}H_{3}N(CH_{3})C_{2}H_{4}WCp(CO)_{3}^{+} \xrightarrow{Et_{4}NCN} CpW(CO)_{3}CH_{2}CH(CN)N(CH_{3})C_{2}H_{4}WCp(CO)_{3}$$

The mode of addition of the tungsten and the nitrile group to the double bond in the final step has not been firmly established; it may be opposite to that shown here.

Recently there was a report¹⁰ of the reaction of ethylene oxide with $CpFe(CO)_{2^-}$ to form $CpFe(CO)_2CH_2CH_2O^-$. Protonation of this gave $CpFe(CO)_2C_2H_4^+$; $CpFe-(CO)_2CH_2CH_2OH$ would be an expected protonation product but apparently was too unstable to isolate. We now find that $CpMo(CO)_{3^-}$ and $CpW(CO)_{3^-}$ react similarly with ethylene oxide, forming $CpMo(CO)_3CH_2CH_2O^-$ and $CpW-(CO)_3CH_2CH_2O^-$ which readily protonate to form isolable $CpMo(CO)_3CH_2CH_2OH$ and $CpW(CO)_3CH_2CH_2OH$. These alcohols are stable for several weeks at room temperature and longer at lower temperatures; they do decompose slowly with the release of ethylene and are converted to the corresponding ethylene complexes by treatment with strong acids.

The formulas $CpMo(CO)_3CH_2CH_2O^-$ and $CpW-(CO)_3CH_2CH_2O^-$ do not adequately represent the structures. The infrared spectra exhibit C=O stretching absorptions at 1580 and 1550 cm⁻¹, respectively, implying structure XIII.

The alternative possibility, that an insertion reaction occurred in the formation of XIII, similar to that occurring in the formation of VIII, is ruled out by the previously mentioned facile conversions to $CpM(CO)_3CH_2CH_2OH$ and $CpM_{(CO)_3C_2H_4^+}$.

Reaction of XIIIa with $CpFe(CO)_2C_2H_4^+$ and with $CpW(CO)_3C_2H_4^+$ and reaction of the latter with XIIIb has given $CpMo(CO)_3CH_2CH_2OCH_2CH_2FeCp(CO)_2$, $CpMo-(CO)_3CH_2CH_2OCH_2CH_2WCp(CO)_3$, and $(CpW-(CO)_3CH_2CH_2)_2O$. All of these decompose slowly (weeks) with the evolution of ethylene. Spectral data are in Table II.

Experimental Section

Ethylene Complexes. CpFe(CO)₂C₂H₄⁺. An adaptation of the literature method¹¹ was used. Triphenylmethyl hexafluorophosphate (7.8 g, 20 mmol) was added to a solution of CpFe(CO)₂C₂H₅ (4 g, 19 mmol) in chloroform (30 ml) in a nitrogen atmosphere. The mixture was stirred for 1 hr and then filtered. The filter cake was dissolved in acetone (150 ml) at ambient temperature. Partial evaporation of the solution precipitated yellow CpFe(CO)₂C₂H₄+PF₆⁻ (5.2 g, 77%).

 $CpMo(CO)_3C_2H_4^+$. This was prepared according to the literature¹² and isolated as the hexafluorophosphate salt.

 $CpW(CO)_3C_2H_4^+$. The preparation of $CpW(CO)_3C_2H_4^+$ from $CpW(CO)_3Cl$, aluminum chloride, and ethylene has been reported¹³ but a different procedure was used in this work.

A mixture of tungsten hexacarbonyl (35.5 g, 0.1 mol) and sodium cyclopentadienide (10.6 g, 0.12 mol) in tetrahydrofuran (200 ml) was refluxed overnight under nitrogen and allowed to cool. Ethyl iodide (23.4 g, 0.15 mol) was added and the mixture was stirred overnight at ambient temperature. The solvent was removed under vacuum and the residue was extracted with chloroform (200 ml). The extracts were mixed with Ph₃CPF₆ (38.8 g, 0.1 mol) and chloroform (400 ml) and stirred for 3 days. Filtration gave a green solid which was extracted with acetone. Partial concentration of the extracts gave

yellow crystalline $CpW(CO)_3C_2H_4+PF_6-$ (14.3 g, 28%).

 $CpFe[P(OPh)_3]_2C_2H_4^+$. This was prepared from $CpFe[P(OPh)_3]_2I$ according to literature directions.¹⁴

Reactions. [CpFe(CO)₂CH₂CH₂]₂NH₂+. Ammonia was bubbled through a mixture of CpFe(CO)₂C₂H₄PF₆ (2.0 g, 5.7 mmol) and acetonitrile (20 ml) for 10 min. Water (4 ml) was added and the clear solution was partially concentrated to obtain 0.95 g (60%) of [CpFe(CO)₂CH₂CH₂]₂NH₂+PF₆⁻. Anal. Calcd for C₁₈H₂₀F₆NO₂PFe₂: C, 37.86; H, 3.53; N, 2.45. Found: C, 37.72; H, 3.51; N, 2.54.

Comparable yields were obtained in benzene. Quantitative conversions (by NMR analysis) were obtained when C_5H_5Fe -(CO)₂C₂H₄+PF₆- was exposed to ammonia vapor without solvent.

Attempted deprotonation of $[C_5H_5Fe(CO)_2C_2H_4]_2NH_2^+$ by reaction with sodium hydroxide has not given pure products; reaction with warm aqueous alcoholic hydrochloric acid rapidly regenerates $C_5H_5Fe(CO)_2C_2H_4^+$.

A mixture of $[CpFe(CO)_2CH_2CH_2]_2NH_2^+PF_6^-$ (0.3 g, 0.52 mmol) and tetraethylammonium cyanide (0.2 g, 1.3 mmol) in acetonitrile (7 ml) was stirred briefly and filtered. Dilution of the filtrate with 5 drops of water caused the separation of crystalline yellow $[CpFe(CO)_2CH_2CH_2]_2NH_2CN$. Anal. Calcd for $C_{19}H_{20}N_2O_4Fe_2$: C, 50.48; H, 4.46; N, 6.20. Found: C, 49.56; H, 4.61; N, 5.45.

CpFe(CO)₂**CH**₂**CH**₂**N(CH**₃)₃⁺. Trimethylamine was bubbled into a solution of CpFe(CO)₂C₂H₄+PF₆⁻ (2.5 g, 7.1 mmol) in acetonitrile (25 ml) until reaction ceased. The solution was filtered; the filtrate was concentrated to a small volume and then diluted with benzene to precipitate crystalline CpFe(CO)₂CH₂CH₂N(CH₃)₃+ PF₆⁻ (2.74 g, 94%; mp 134–139° dec), which was dried at ambient temperature under vacuum. Anal. Calcd for C1₂H₁₈F₆FeNO₂P: C, 35.23; H, 4.43; N, 3.42; F, 27.87; Fe, 13.65; P, 7.51. Found: C, 35.38; H, 4.44; N, 3.29; F, 28.16; Fe, 13.70; P, 7.57.

A sample of CpFe(CO)₂CH₂CH₂N(CH₃)₃+PF₆⁻ was treated with warm aqueous alcoholic sodium hydroxide. Crystalline [C₅H₅-Fe(CO)₂]₂ was obtained. The same product was found when a second sample was treated with aqueous acetonitrile for 24 hr.

CpFe(CO)₂**CH**₂**CH**₂**NC**₃**H**₅⁺. Two grams (5.7 mmol) of C₅H₅Fe(CO)₂C₂H₄+PF₆⁻ was dissolved in pyridine (10 ml). Dilution of the clear solution with benzene (15 ml) caused the separation of crystalline yellow CpFe(CO)₂CH₂CH₂CH₂NC₅H₅+PF₆⁻ (2.2 g, 90%; mp 96–105° dec). Heating at 80° causes loss of pyridine; the analytical sample was dried at ambient temperature. Anal. Calcd for CpC₁4H₁₄F₆FeNO₂P: C, 39.19; H, 3.29; N, 3.27; F, 26.57; Fe, 13.01. Found: C, 38.57; H, 2.95; N, 3.03; F, 27.32; Fe, 12.98. The addition of water to the NMR sample solution caused rapid dissociation of the pyridine with regeneration of the ethylene complex.

CpFe(CO)₂CH₂CH₂P(C₆H₅)₃⁺. A mixture of CpFe-(CO)₂C₂H₄⁺PF₆⁻ (2.0 g, 5.7 mmol), triphenylphosphine (1.8 g, 6.9 mmol), and acetonitrile (25 ml) was stirred in a nitrogen atmosphere for 30 min and then filtered. The filtrate was diluted with ether until it was cloudy and then allowed to stand for 3 hr. Filtration gave 2.2 g (63%) of yellow-orange crystalline CpFe(CO)₂CH₂CH₂P-(C₆H₅)₃⁺PF₆⁻. Anal. Calcd for C₂7H₂4F₆FeO₂P₂: C, 52.96; H, 3.95. Found: C, 52.95; H, 4.04.

CpFe(CO)₂**CH**₂**CH**₂**CN**. Tetraethylammonium cyanide (1.5 g, 10 mmol) was added to a solution of CpFe(CO)₂C₂H₄+PF6⁻ (2.0 g, 5.7 mmol) in acetonitrile (15 ml) in a nitrogen atmosphere. Slight bubbling was noted. The mixture was evaporated to dryness and the residue was extracted several times with benzene. The benzene extracts were combined and evaporated and the new residue was extracted with ethyl ether. Evaporation of the ether extracts left 0.4 g of a red oil which was shown by proton NMR analysis to contain 70% (21% yield) CpFe(CO)₂CH₂CH₂CN.⁹

CpFe[P(OPh)₃]₂**C**H₂**CH**₂**CN**. Tetraethylammonium cyanide (0.15 g, 1.0 mmol) was added to CpFe[P(OPh)₃]₂C₂H₄+BF₄⁻⁻ (0.5 g, 0.58 mmol) in acetonitrile (15 ml) in a nitrogen atmosphere. After 1 hr the solvent was removed, leaving a yellow solid which was extracted with benzene. The addition of hexane to the filtered extracts caused the slow separation of yellow, crystalline CpFe[P(OPh)₃]₂CH₂CH₂CN (0.32 g, 69%). The analytical sample was recrystallized again from benzene–hexane. Anal. Calcd for C44H₃₉FeNO6P₂: C, 66.42; H, 4.94; N, 1.76; O, 12.07. Found: C, 66.72; H, 5.33; N, 1.73; O, 11.87.

 $CpMo(CO)_2COCH_2CH_2NH_2$. Ammonia was passed through a mixture of $CpMo(CO)_3C_2H_4+PF_6-$ (3.0 g, 7.2 mmol) and bonzene (80 ml) for 25 min. The mixture was filtered and the filter cake was added to 40 ml of acetone. This mixture was shaken with 10 ml of

Table II. Spectral Data

	$ au(\mathrm{H})^{a}$		$\nu, b \text{ cm}^{-1}$		
Compd ^{<i>c</i>}	$CH_3, C_6H_5,$ or NC ₅ H ₅	C _s H _s	CH ₂ ^d	C≡O	C=0
$\begin{array}{c} CpFe(CO)_{2}C_{2}H_{4}^{+}(I)\\ CpMo(CO)_{3}C_{2}H_{4}^{+}(II)\\ CpW(CO)_{3}C_{2}H_{4}^{+}(II)\\ [CpFe(CO)_{2}CH_{2}CH_{2}]_{2}NH_{2}^{+}(IV)\\ [CpMo(CO)_{3}CH_{2}CH_{2}]_{2}NH_{2}^{+}(V)\\ [CpW(CO)_{3}CH_{2}CH_{2}]_{2}NH_{2}^{+}(VI)\\ CpW(CO)_{3}CH_{2}CH_{2}NH_{3}^{+}(VI)\\ CpW(CO)_{3}CH_{2}CH_{2}NH_{3}^{+}(VI)\\ \end{array}$		4.47 (5) 4.09 (5) 4.00 (5) 5.07 (5) 4.55 (5) 4.45 (5) 4.40 (5)	6.30 (4) 6.66 (4) 7.04 (4) 7.0 (2), 8.8 (2) 6.8 (2), 8.62 (2) 6.9 (2), 8.5 (2) 6.85 (2), 8.5 (2)	2100-2040 2100-2000 2100-2000 2000, 1940 2040, 1930 2040, 1950-1900 2040, 1950-1900	
CpW(CO) ₂ COCH ₂ CH ₂ NH ₂ (VIII)				1950, 1810	1600, 1530 (C=O, NH ₂)
$\begin{array}{c} CpMo(CO)_{2}COCH_{2}CH_{2}N(H) - \\ CH_{2}CH_{2}MoCp(CO)_{3} (IXa) \end{array}$		4.52 (5) 4.79 (5)	6.6-9.0 (8)	2030, 1940, 1840	1710, ^f 1590
CpW(CO) ₂ COCH ₂ CH ₂ NH- CH ₂ CH ₂ WCp(CO) ₃ ^e (IXb)		4.42 (5) 4.47 (5)	6.0-8.5 (8)	2030, 1950, 1840	1600
$CpMo(CO)_2COCH_2CH_2NH_2$ (X)	,	4.8 (5)	7.3-8.0 (4)	1950, 1820	1590, 1540 (C=O, NH ₂)
$CpW(CO)_2C(OH)CH_2CH_2N(H)-CH_2CH_2WCp(CO)_3^+(XI)$		4.42 (5) 4.47 (5)	6.0-8.5 (8)	2000, 1960, 1920	1710 ^f
$CpFe(CO)_{2}CH_{2}CH_{2}NC_{5}H_{5}^{+}$ $CpMo(CO)_{3}CH_{2}CH_{2}NC_{5}H_{5}^{+}$ $CpW(CO)_{3}CH_{2}CH_{2}NC_{5}H_{5}^{+}$ $[CpMo(CO)_{3}CH_{2}CH_{2}]_{2}N(H)CH_{3}^{+}$	1.2-2.3 (5) 1.2-2.3 (5) 1.2-2.3 (5)	5.0 (5) 4.5 (5) 4.44 (5)	5.5 (2), 8.4 (2) 5.35 (2), 8.2 (2) 5.4 (2), 8.1 (2)	2100-1950 2030, 1930 2030, 1940 2030, 1940	
$[CpW(CO)_{3}CH_{2}CH_{2}]_{2}N(H)CH_{3}^{+}$ $[CpW(CO)_{3}CH_{2}CH_{2}]_{2}N(CH_{3})_{2}^{+}$ $CpW(CO)_{3}CH_{2}CH_{2}N(H)(CH_{3})_{2}^{+}$ $CpFe(CO)_{3}CH_{2}CH_{2}N(H)_{3}^{+}$	7.3 (3) 7.15 (6) 7.15 (6) 7.12 (9)	4.4 (5) 4.28 (10) 4.28 (5) 5.05 (5)	6.8 (2), 8.5 (2) 6.70 (4), 8.5 (4) 6.75 (2), 8.5 (2) 6.72 (2), 8.77 (2)	2020, 1900 2040, 1950 2040, 1940 2040, 1940	
$CpMo(CO)_{3}CH_{2}CH_{2}N(CH_{3})_{3}^{+}$ $CpW(CO)_{3}CH_{2}CH_{2}N(CH_{3})_{3}^{+}$ $CpFe(CO)_{2}CH_{2}CH_{2}P(C_{6}H_{5})_{3}^{+}$ $CpMo(CO)_{3}CH_{2}CH_{2}P(C_{6}H_{5})_{3}^{+}$ $CpW(CO)_{3}CH_{2}CH_{2}P(C_{6}H_{5})_{3}^{+}$	7.08 (9) 7.10 (9) 2.1-2.4 (15) 2.1-2.4 (15) 2.1-2.4 (15)	4.52 (5) 4.4 (5) 5.05 (5) 4.4 (5) 4.4 (5)	6.65 (2), 8.5 (2) 6.7 (2), 8.5 (2) 6.75 (2), 8.75 (2) 6.7 (2), 8.75 (2) 6.65 (2), 8.5 (2)	2040, 1940 2030, 1930 2000, 1940 2030, 1940 2020, 1940	
$CpW(CO)_2COCH_2CH_2N(CH_3)-$ CH_2CH_WCp(CO)_1(XII)				2020, 1930, 1850	1600
$[CpW(CO)_3CH_2CH_2]_2NCH_3$ CpFe(CO)_2CH_2CH_2CN^g	7.54 (3)	4.56 (10) 5.80 (5)	8.17 (4), 7.07 (4) 7.9 (2), 8.8 (2)	2020, 1900	
CpFe[P(OC_6H_5) ₃] ₂ CH ₂ CH ₂ CH ₂ CN ^h CpMo(CO) ₃ CH ₂ CH ₂ CN ^g CpW(CO) ₃ - π -C ₂ H ₃ N(CH ₃)CH ₂ - CH ₂ WCp(CO) ₃ *	2.6-3.15 (30)	$6.05 (5)^{i}$ 5.5 (5)	7.52 (2), 8.55 (2) 7.8 (2), 8.7 (2)	2040-1900 2040, 1940	j j
$CpW(CO)_{3}CH_{2}CH(CN)N(CH_{3})-CH_{2}CH_{2}WCp(CO)_{3}$				2020, 1940	
$CpMo(CO)_2COOCH_2CH_2^{-k}$ (XIIIa)	6.52 (4) 6.7 (6)	4.90 (5)	5.3-9.0 (4)	1900, 1800	1560
CpMo(CO) ₃ CH ₂ CH ₂ OH				2020, 1940	
$CpW(CO)_2COOCH_2CH_2^{-k}$ (XIIIb)	6.52 (4) 6.7 (6)	4.78 (5)	5.8-8.6 (4)	1900, 1800	1550
CpW(CO) ₃ CH ₂ CH ₂ OH CpMo(CO) ₃ CH ₂ CH ₂ OCH ₂ CH ₂ - FeCp(CO) ₂		4.48 (5) 4.58 (5) 5.12 (5)	6.4 (2), 8.4 (2) 6.5 (4), 8.1 (2) 8.5 (2)	2030, 1940 2000, 1920, 1880	
CpMo(CO) ₃ CH ₂ CH ₂ OCH ₂ CH ₂ - WCp(CO) ₃	i.	4.68 (5) 4.53 (5)	6.15 (4), 8.04 (4)	2000, 1900	
$[Cpw(CO)_3CH_2CH_2]_2O^e$ $CpW(CO)_3OCH_2CH_2WCp(CO)_3^l$		4.58 (10) 4.34 (5) 4.66 (5)	6.4 (4), 8.4 (4) 5.1 (2), 8.0 (2)	2000, 1900 2000, 1900	

^a Internal standard TMS, 10.0; all spectra in CD₃CN unless otherwise noted. ^b Nujol mull. ^c Data were determined on all cations as PF₆⁻ salts except for XI which was a $B_{12}Cl_{12}^{2^-}$ salt. ^d All CH₂ resonances were multiplets except in ethylene complexes, which exhibited singlets. ^e NMR in C₅D₅N. ^f C=O of retained acetone; see Experimental Section. ^g NMR in C₆D₆. ^h NMR in CDCl₃. ⁱ Triplet; J = 1 Hz. ^j ν_{CN} 2290 cm⁻¹. ^k Data were determined on sodium salt; peaks at τ 6.52 and 6.7 due to solvation with 1,2-dimethoxyethane. ^l NMR in CD₂Cl₂.

10% aqueous sodium hydroxide briefly. The aqueous sodium hydroxide layer was removed and discarded and the acetone layer was diluted with water until it became turbid (ca. 50-60 ml of water). The solution was clarified by warming slightly; more water was added until slight turbidity was again noted and the solution was allowed to stand overnight. Crystalline CpMo(CO)₂COCH₂CH₂NH₂ (0.83 g, 40%) separated. The same product is obtained if the sodium hydroxide treatment is omitted but the purity is not as satisfactory. Anal. Calcd for C10H11MONO3: C, 41.54; H, 3.84; N, 4.84; mol wt 289. Found: C, 41.39; H, 3.55; N, 4.75; mol wt 294 (boiling point in CH₃CN).

[CpMo(CO)₃CH₂CH₂]₂NH₂⁺. Ammonia vapors were passed over solid CpMo(CO)₃C₂H₄+PF₆⁻ (3 g, 7.2 mmol) for 20 min. The crude product was a <u>mixture of 70%</u> [CpMo(CO)₃CH₂CH₂]₂NH₂+PF₆⁻ and 30% CpMo(CO)₂COCH₂CH₂NH₂ by NMR analysis. This mixture was washed with alcohol (this is essential) and the insoluble portion was recrystallized from aqueous acetonitrile to obtain 0.61 g (24%) of [CpMo(CO)₃CH₂CH₂]₂NH₂+PF₆⁻⁻. Anal. Calcd for C₂₀H₂₀F₆Mo₂NO₆P: C, 33.96; H, 2.85; N, 1.98; F, 16.12. Found: C, 33.84; H, 2.74; N, 2.22; F, 15.89.

A mixture of $[CpMo(CO)_3CH_2CH_2]_2NH_2^+PF_{6^-}$ (0.88 g, 1.2 mmol), alcohol (20 ml), and concentrated hydrochloric acid (4 ml)

was heated to boiling for about 30 sec, filtered, and allowed to cool. The resulting crystalline product was recrystallized from alcohol to obtain [CpMo(CO)₃CH₂CH₂]₂NH₂Cl. Anal. Calcd for C₂₀H₂₀ClMo₂NO₆: C, 40.19; H, 3.37; N, 2.34; O, 16.06; Cl, 5.93. Found: C, 39.69; H, 3.39; N, 2.34; O, 16.05; Cl, 7.49. The infrared spectra of the hydrochloride and the corresponding PF₆- salt were virtually identical in the C \equiv O region; the spectrum of the PF₆- salt had an N-H stretching absorption at 3300 cm⁻¹, and the spectrum of the hydrochloride has bands at 2700-2800 cm⁻¹ that may be attributed to N-H hydrogen bonded to the chlorine.

CpMo(CO)₂COCH₂CH₂N(H)CH₂CH₂Mo(CO)₃Cp. Ammonia vapor was passed over solid CpMo(CO)₃C₂H₄+PF₆⁻ (3.0 g, 7.2 mmol) for 15 min with occasional agitation. In a nitrogen atmosphere the crude product was dissolved in acetone (25 ml) and this solution was shaken with 1.6 g of sodium hydroxide in 6 ml of water for 1 min. The aqueous sodium hydroxide layer was removed; the acetone layer was filtered and diluted with water until it became slightly turbid. It was clarified by warming and then allowed to stand for 2 hr. Filtration gave crystalline CpMo(CO)₂COCH₂CH₂N(H)-CH₂CH₂Mo(CO)₃Cp (0.6 g). Proton NMR analysis revealed the retention of 0.3 molar equiv of acetone which was not removed even on drying at 80°. The product is not stable in air. Anal. Calcd for CsH₅Mo(CO)₂COC₂H₄N(H)C₂H₄Mo(CO)₃C₅H₅·0.3(CH₃)₂CO: C, 43.38; H, 3.62; N, 2.42; O, 17.42; mol wt 579. Found: C, 43.39; H, 3.78; N, 2.57; O, 17.52; mol wt 575 (boiling point in acetone).

The same product is obtained (though in less pure form) if the sodium hydroxide treatment is omitted, unless the crude product is washed with alcohol in which case $[C_5H_5M_0-(CO)_3CH_2CH_2]_2NH_2+PF_6$ - is obtained.

[CpMo(CO)₃CH₂CH₂]₂NH(CH₃)⁺. Methylamine was passed into a solution of CpMo(CO)₃C₂H₄+PF₆⁻ (0.37 g, 0.89 mmol) in acetone (3 ml) until a clear dark red solution formed. This was diluted with water until it was slightly turbid and then allowed to stand. Crystalline [CpMo(CO)₃CH₂CH₂]₂NH(CH₃)+PF₆⁻ (0.16 g, 50% separated). Anal. Calcd for C₂₁H₂₂F₆Mo₂NO₆P: C, 34.97; H, 3.08; N, 1.94. Found: C, 35.58; H, 3.10; N, 2.14.

CpMo(CO)₃**CH**₂**CH**₂**N(CH**₃)₃⁺. Trimethylamine was bubbled into a solution of CpMoC₂H₄+PF₆⁻ (2.5 g, 6 mmol) in acetonitrile (25 ml) for 5 min. The solution was filtered; concentration of the filtrate to a small volume followed by dilution with benzene precipitated 1.5 g (52%) of CpMo(CO)₃CH₂CH₂N(CH₃)₃+PF₆⁻ which was dried in vacuo at ambient temperature. Decomposition occurred on attempted drying of a small portion at 80°. Proton NMR analysis revealed that the analytical sample, dried at ambient temperature, retained about 0.2 molar equiv of benzene. Anal. Calcd for C₅H₅Mo-(CO)₃C₂H₄N(CH₃)₃PF₆·0.2C₆H₆: C, 34.60; H, 3.93; N, 2.84; F, 23.39. Found: C, 34.75; H, 3.85; N, 3.00; F, 22.92.

The addition of water to an acetonitrile solution of CpMo-(CO)₃CH₂CH₂N(CH₃)₃+PF₆⁻ caused the slow formation of [CpMo(CO)₃]₂; ethylene was also detected. In a separate experiment the addition of water to an acetonitrile solution of CpMo(CO)₃C₂H₄+ was also found to cause conversion to [CpMo(CO)₃]₂.

CpMo(CO)₃CH₂CH₂NC₅H₅+. A solution of CpMo-(CO)₃C₂H₄+PF₆⁻ (1.0 g, 2.4 mmol) in pyridine (20 ml) was diluted with water causing the precipitation of CpMo-(CO)₃CH₂CH₂NC₅H₅+PF₆⁻ as a yellow crystalline solid (0.6 g, 50%). Anal. Calcd for C₅H₅Mo(CO)₃C₂H₄NC₅H₅PF₆: C, 36.23; H, 2.84; N, 2.82; P, 6.23; F, 22.92. Found: C, 36.69; H, 2.85; N, 2.80; P, 5.90; F, 23.00.

CpMo(CO)₃CH₂CH₂P(C₆H₅)₃⁺. A solution of CpMo-(CO)₃C₂H₄+PF₆⁻ (4.0 g, 9.6 mmol) and triphenylphosphine (3.2 g, 12.2 mmol) in acetonitrile (75 ml) was stirred for 10 min and filtered. The filtrate was diluted to 825 ml with ether and allowed to stand until crystals ceased forming. Filtration gave yellow crystals of CpMo(CO)₃CH₂CH₂P(C₆H₅)₃+PF₆⁻, 5.24 g (80%). The analytical sample was dried at 80° in vacuo for 16 hr. Anal. Calcd for C₂₈H₂₄F₆MoO₃P₂: C, 49.43; H, 3.56; P, 9.10; F, 16.75. Found: C, 49.54; H, 3.56; P, 9.28; F, 16.43.

 $CpMo(CO)_3C_2H_4CN$. Tetraethylammonium cyanide (1.2 g, 7.7 mmol) was added to a solution of $CpMo(CO)_3C_2H_4^+PF_6^-$ (3 g, 7.2 mmol) in acetonitrile (100 ml) in a nitrogen atmosphere. The mixture was stirred 15 min followed by removal of solvent. The residue was extracted with benzene; the extracts were concentrated to a small volume and diluted with hexane. On standing overnight, yellow crystals and a red grease separated. The yellow crystals were $CpMo(CO)_3CH_2CH_2CN$, 0.7 g (33%). Anal. Calcd for

[CpW(CO)₃CH₂CH₂]₂NH₂⁺. Ammonia vapors were passed over solid CpW(CO)₃C₂H₄+PF₆⁻ (4.0 g, 7.9 mmol) for 10 min with occasional agitation. Proton NMR analysis showed it was 90% converted to [CpW(CO)₃CH₂CH₂]₂NH₂+PF₆⁻. Extraction with acetonitrile (80 ml) followed by filtration and dilution of the extract with water (50 ml) gave 1.53 g of [CpW(CO)₃CH₂CH₂]₂NH₂+PF₆⁻. Concentration of the filtrate gave an additional 0.45 g for a total yield of 1.98 g (57%). Anal. Calcd for C₂₀H₂₀F₆NO₆PW₂: C, 27.20; H, 2.28; N, 1.59; F, 12.91; P. 3.51. Found: C, 27.51; H, 2.20; N, 1.82; F, 13.45; P, 3.42.

Tetraethylammonium cyanide (0.9 g, 5.8 mmol) was added to a mixture of $[CpW(CO)_3CH_2CH_2]_2NH_2^+PF_6^-$ (1.6 g, 1.8 mmol) and acetonitrile (25 ml) which was then stirred for 10 min and filtered. Dropwise addition of water to the filtrate precipitated $[CpW(CO)_3CH_2CH_2]_2NH_2CN$ as a yellow crystalline solid. Anal. Calcd for C₂₁H₂₀N₂O₆W₂: C, 33.01; H, 2.64; N, 3.67. Found: C, 33.20; H, 3.32; N, 3.91.

Heating a sample overnight at 70° in vacuo caused loss of HCN and the formation of $CpW(CO)_2COCH_2CH_2NHCH_2CH_2WCp-(CO)_3$, identical with that prepared below.

CpW(CO)₃CH₂CH₂NH₃⁺ and CpW(CO)₂COCH₂CH₂NH₂. Ammonia was passed through a mixture of CpW(CO)₃C₂H₄+PF₆⁻ (6.0 g, 11.8 mmol) and acetonitrile (50 ml) for 20 min. The reaction mixture was filtered; the filtrate was diluted with water to the cloud point and partially concentrated. Filtration gave 2.0 g (39%) of [CpW(CO)₃CH₂CH₂]₂NH₂+PF₆⁻. Concentration of the filtrate to near dryness precipitated 2.4 g (39%) of CpW-(CO)₃CH₂CH₂NH₃+PF₆⁻ which was isolated and washed well with water. Anal. Calcd for C₁₀H₁₂F₆NO₃PW: C, 22.96; H, 2.31; N, 2.68. Found: C, 23.92; H, 2.42; N, 2.83. [CpW-(CO)₃CH₂CH₂]₂NH₂+PF₆⁻ is insoluble in tetrahydrofuran while the monoalkylated analog is quite soluble.

Addition of tetraethylammonium cyanide to an acetonitrile solution of $CpW(CO)_3CH_2CH_2NH_3^+PF_6^-$, followed by stirring for 10 min and dilution with water, gave crystalline $CpW(CO)_2COCH_2CH_2NH_2$. Anal. Calcd for $C_{10}H_{11}NO_3W$: C, 31.85; H, 2.94; N, 3.71; O, 12.73. Found: C, 31.71; H, 2.84; N, 3.24; O, 12.60.

A solution of $CpW(CO)_3CH_2CH_2NH_3^+PF_6^-$ (1.0 g, 1.9 mmol) in tetrahydrofuran (20 ml) was heated at 50° for 16 hr under 40 psig of carbon monoxide. Crystalline [CpW(CO)_3CH_2CH_2]_2NH_2^+PF_6^-(0.53 g, 62%) slowly separated.

 $CpW(CO)_2COCH_2CH_2NHCH_2CH_2W(CO)_3Cp.$ A suspension of [CpW(CO)_3CH_2CH_2]_2NH2⁺PF6⁻ (1.4 g, 1.6 mmol) in acetone (8 ml) was stirred with water (2 ml) containing 0.52 g of sodium hydroxide. A nitrogen atmosphere was maintained. The layers were separated; dilution of the acetone layer with water gave an oil. This was taken up in warm alcohol, water was added, and the solution was allowed to cool to obtain yellow crystalline CpW-(CO)_2COCH_2CH_2NHCH_2CH_2W(CO)_3Cp (0.3 g, 25%). This is air sensitive. Anal. Calcd for C_{20}H_{19}NO_6W_2: C, 32.59; H, 2.60; N, 1.90; O, 13.02; mol wt 737. Found: C, 32.65; H, 2.69; N, 2.16; O, 12.79; mol wt 741 (boiling point in acetone).

 $[CpW(CO)_3CH_2CH_2]_2NH(CH_3)^+$. Methylamine was passed over solid $CpW(CO)_3C_2H_4^+PF_6^-$ (2.5 g, 2.8 mmol) for 10 min. The resulting sticky orange solid was extracted with acetone. The filtered extracts were diluted with water to precipitate crystalline yellow $[CpW(CO)_3CH_2CH_2]_2NHCH_3^+PF_6^-$ (0.9 g, 36%). Anal. Calcd for $C_{21}H_{22}F_6NO_6PW_2$: C, 28.11; H, 2.47; N, 1.56. Found: C, 28.38; H, 2.36; N, 1.70.

[CpW(CO)₃CH₂CH₂]NCH₃ and CpW(CO)₂COCH₂CH₂N-(CH₃)CH₂CH₂W(CO)₃Cp. Methylamine was passed over CpW-(CO)₃C₂H₄+PF₆⁻ (2.0 g, 4 mmol) for 5 min with occasional mixing. In a nitrogen atmosphere the resulting orange pasty solid was mixed with acetone (15 ml). A solution of sodium hydroxide (0.64 g) in water (5 ml) was added and the mixture was agitated for several minutes. The water layer was removed. The acetone solution was filtered and the filtrate was diluted with water to separate orange, crystalline [CpW(CO)₃CH₂CH₂]2NCH₃ (0.6 g, 40%). Anal. Calcd for C₂1H₂₁NO₆W₂: C, 33.58; H, 2.82; N, 1.87; mol wt 751. Found: C, 32.81; H, 3.01; N, 2.03; mol wt 800 (boiling point in acetone). Repeating the above reaction sometimes gave CpW-(CO)₂COCH₂CH₂N(CH₃)CH₂CH₂W(CO)₃Cp. In addition, this insertion product can be formed from its noninserted precursor by treatment with tetraethylammonium cyanide.

Tetraethylammonium cyanide (0.4 g) was added to [CpW-(CO)₃'CH₂CH₂]₂NCH₃ (0.68 g) in acetonitrile (45 ml) and the mixture was boiled for 3 min in a nitrogen atmosphere, filtered, and <u>diluted with water</u>. Crystalline yellow-orange CpW-(CO)₂COCH₂CH₂N(CH₃)CH₂CH₂W(CO)₃Cp separated. Anal. Calcd for C₂₁H₂₁NO₆W₂: C, 33.58; H, 2.82; N, 1.87. Found: C, 33.85; H, 2.61; N, 1.99.

 $CpW(CO)_3CH_2CH_2]_2N(CH_3)_2^+$. Dimethylamine was passed over $CpW(CO)_3C_2H_4^+PF_6^-$ (2.0 g, 4 mmol) for 10 min. The resulting product was extracted with acetone (15 ml). Ten milliliters of water was added and the mixture was filtered after 10 min to obtain yellow-orange [$CpW(CO)_3CH_2CH_2]_2N(CH_3)_2^+PF_6^-$ (0.59 g). An additional 0.15 g separated from the filtrate after 3 days for a total yield of 0.74 g (40%). Anal. Calcd for $C_{22}H_24F_6NO_6PW_2$: C, 28.99; H, 2.65; N, 1.54. Found: C, 29.66; H, 2.90; N, 1.69.

The final filtrate from the above reaction separated crystalline $CpW(CO)_3CH_2CH_2N(H)(CH_3)_2^+PF_6^-$ (0.4 g, 21%) on standing another 24 hr. Anal. Calcd for $C_{12}H_{16}F_6NO_3PW$: C, 26.15; H, 2.93; N, 2.54; P, 5.62. Found: C, 26.67, 26.47; H, 2.93, 2.94; N, 2.62, 2.59; P, 5.35.

The addition of an acetonitrile solution of tetraethylammonium cyanide to $[CpW(CO)_3CH_2CH_2]_2N(CH_3)_2+PF_6^-$ in acetonitrile caused the slow separation of yellow crystalline $[CpW-(CO)_3CH_2CH_2]_2N(CH_3)_2CN$. Anal. Calcd for $C_{21}H_{24}N_2O_6W_2$: C, 34.87; H, 3.05; N, 3.53. Found: C, 34.58; H, 3.22; N, 3.40.

 $CpW(CO)_3CH_2CH_2N(CH_3)_3^+$. Trimethylamine was bubbled into a solution of $CpW(CO)_3C_2H_4^+PF_6^-$ (3 g, 5.9 mmol) in acetonitrile (40 ml) for 15 min. The resulting clear solution was diluted with benzene and petroleum ether to precipitate crystalline yellow $CpW(CO)_3CH_2CH_2N(CH_3)_3^+PF_6^-$ (2.7 g, 81%). Proton NMR showed that about 0.27 molar equiv of benzene was retained. Anal. Calcd for $CpW(CO)_3C_2H_4N(CH_3)_3PF_6\cdot 0.27C_6H_6$: C, 29.98; H, 3.27; N, 2.39; F, 19.47; P, 5.29. Found: C, 30.42, 30.58; H, 3.41, 3.28; N, 2.44, 2.45; F, 19.14; P, 5.00.

CpW(CO)₃CH₂CH₂NC₅H₅+. A solution of CpW(CO)₃C₂H₄+PF₆-(1.8 g, 3.6 mmol) in pyridine (30 ml) was prepared and filtered. Dilution of the filtrate with water precipitated yellow crystalline CpW(CO)₃CH₂CH₂NC₅H₅+PF₆-(1.64 g, 78%). Anal. Calcd for C₁5H₁₄F₆NO₃PW: C, 30.79; H, 2.41; N, 2.39; F, 19.48. Found: C, 30.93, 31.01; H, 2.26, 2.23; N, 2.30, 2.28; F, 19.59.

CpW(**CO**)₃**CH**₂**CH**₂**P**(C₆H₅)₃⁺. A solution of CpW-(CO)₃C₂H₄+PF₆⁻ (3.0 g, 5.9 mmol) and triphenylphosphine (1.8 g, 6.9 mmol) in acetonitrile (30 ml) was stirred for 30 min and then filtered. The filtrate was diluted with ether until crystals began to separate. The mixture was allowed to stand for 1 hr and then filtered to obtain 3.8 g (84%) of CpW(CO)CH₂CH₂P(C₆H₅)₃+PF₆⁻, a light-sensitive yellow solid which was dried at 80° in vacuo. Anal. Calcd for C₂₈H₂₄F₆O₃P₂W: C, 43.77; H, 3.15; P, 8.06. Found: C, 43.75; H, 3.25; P, 7.81.

Refluxing a mixture of $[CpW(CO)_3CH_2CH_2]_2NH_2^+PF6^-$ (0.8 g, 0.9 mmol) and triphenylphosphine (2.0 g, 7.6 mmol) in tetrahydrofuran (30 ml) caused the slow formation of a yellow solution. After a 16-hr reflux period, the solution was concentrated and the concentrate was diluted with ether until it became cloudy. Light yellow crystals of CpW(CO)_3CH_2CH_2P(C_6H_5)_3^+PF6^- separated on standing.

A mixture of $CpW(CO)_3CH_2CH_2P(C_6H_5)_3^+PF_6^-$ (1.0 g), methanol (25 ml), and concentrated hydrochloric acid (5 ml) was refluxed overnight in a nitrogen atmosphere. The resulting black reaction mixture was evaporated to dryness. The black residue was extracted with water. The addition of excess aqueous $H_2B_{12}Cl_{12}$ to the filtered extracts precipitated 0.3 g of a white solid. Proton NMR analysis revealed that this contained (C₆H₅)_3PCH₂CH₃⁺.

CpW(CO)₃-π-C₂H₃N(CH₃)CH₂CH₂W(CO)₃Cp⁺. A solution of [CpW(CO)₃CH₂CH₂]₂NCH₃ (0.43 g, 0.57 mmol) in dichloromethane (10 ml) was added to Ph₃C⁺PF₆⁻ (0.6 g, 1.55 mmol) in dichloromethane (10 ml). A yellow precipitate of CpW(CO)₃-π-C₂H₃N(CH₃)CH₂CH₂W(CO)₃Cp⁺PF₆⁻ formed almost immediately (0.37 g, 72%). Anal. Calcd for C₂H₂O₆NO₆PW₂: C, 28.18; H, 2.25; F, 12.74; N, 1.56. Found: C, 28.45; H, 2.45; F, 12.39; N, 1.68. Solubility was too low for a satisfactory NMR spectrum.

 $CpW(CO)_3CH_2CH(CN)N(CH_3)CH_2CH_2WCp(CO)_3$. Tetraethylammonium cyanide (0.25 g, 1.8 mmol) was added to a suspension of $CpW(CO)_3$ - π - $C_2H_3N(CH_3)CH_2CH_2WCp(CO)_3$ + PF_6^- (0.45 g, 0.5 mmol) in acetonitrile (10 ml). Dissolution occurred; the mixture was filtered and the filtrate was evaporated to dryness. The residue was extracted with benzene. The addition of hexane to the extract caused the separation of crystalline yellow $CpW(CO)_3CH_2CH_{(CN)N(CH_3)CH_2CH_2WCp(CO)_3}$ (0.05 g, 13%). Anal. Calcd for $C_{22}H_{20}M_2O_6W_2$: C, 34.04; H, 2.60; N, 3.61. Found: C, 34.08; H, 3.09; N, 3.50. The direction of addition of the cyanide is only assumed. $CpW(CO)_2C(OH)C_2H_4N(H)CH_2CH_2W(CO)_3Cp^+$. A solution of $H_2B_{12}Cl_{12}^8$ (0.6 g, 2.1 mequiv) in water (4 ml) was added to $CpW(CO)_2COCH_2CH_2N(H)CH_2CH_2W(CO)_3Cp$ (0.6 g, 0.81 mmol) in acetone (5 ml). Filtration gave a mixture of orange and yellow solids (starting material plus product). The addition of water to the filtrate precipitated a yellow crystalline product. The original filter cake was again treated with aqueous $H_2B_{12}Cl_{12}$ in acetone and

this was repeated until all of the orange starting complex had been converted. The total yield of the crystalline yellow [CpW-(CO)₂C(OH)CH₂CH₂N(H)CH₂CH₂W(CO₃Cp⁺]₂B₁₂Cl₁₂²⁻. CH₃COCH₃ was 0.6 g, 71%. Anal. Calcd for C4₃H₄₆B₁₂Cl₁₂N₂O₁₃W₄: C, 24.71; H, 2.22; N, 1.34; Cl, 20.36. Found: C, 24.48; H, 2.43; N, 1.22; Cl, 19.96. The proton NMR spectrum in pyridine was identical with that of the starting material, CPW(CO)₂COCH₂CH₂N(H)CH₂CH₂W(CO)₃Cp, except for the CH₃ groups of acetone. [CpW(CO)₂C(OH)CH₂CH₂N(H)-CH₂CH₂W(CO)₃Cp⁺]₂B₁₂Cl₁₂²⁻ was recovered from the NMR solution by the addition of water and was identified by infrared analysis.

CpW(CO)₃**CH**₂**CH**₂**O**[−]. A mixture of tungsten hexacarbonyl (35.5 g, 0.1 mol) and NaC₅H₅ (10.6 g, 0.12 mol) in glyme (1,2-dimethoxyethane, 200 ml) was refluxed overnight in a nitrogen atmosphere. The mixture was filtered. Ethylene oxide was passed through the filtrate for 2 hr. A crystalline yellow solid began to separate after the first hour. Filtration after the reaction period gave 30.8 g (63%) of slightly impure CpW(CO)₃CH₂CH₂ON₄·CH₃OCH₂CH₂OCH₃. A second crop (6.0 g, 12.3%) separated from the filtrate. An analytical sample was obtained by recrystallization from acetone–glyme. Anal. Calcd for C1₄H1₉NaO₆W: C, 34.31; H, 3.91; Na, 4.69; O, 19.59. Found: C, 34.52; H, 4.04; Na, 5.51; O, 19.65.

CpW(CO)₃**CH**₂**CH**₂**OH.** CpW(CO)₃**CH**₂**CH**₂**ON**₄. CH₃**OCH**₂**CH**₂**OCH**₃ (2.0 g, 4.9 mmol) was stirred in acetone (20 ml). Water (4 ml) was added, resulting in almost complete clarification of the solution, which was then filtered. The filtrate was further diluted with water (33 ml), resulting in the slow deposition of needle-shaped crystals of CpW(CO)₃CH₂CH₂OH (1.0 g, 66%). Anal. Calcd for C₁₀H₁₀O4W: C, 31.77; H, 2.67; O, 16.93. Found: C, 32.32; H, 2.78; O, 16.58.

CpMo(CO)₃**CH**₂**CH**₂**O**⁻. Molybdenum hexacarbonyl (26.4 g, 0.1 mol) and sodium cyclopentadienide (10.6 g, 0.12 mol) were heated in refluxing glyme (200 ml) for 16 hr in a nitrogen atmosphere; the solution was filtered. Evaporation of the filtrate left a bright yellow residue of NaCpMo(CO)₃. This was chilled in an ice-water bath and ethylene oxide (300 ml) was condensed onto it. The mixture was stirred overnight during which time the ice-water bath was allowed to warm to room temperature and the ethylene oxide was evaporated. The yellow-orange solid residue was recrystallized by dissolving in warm (not boiling) acetonitrile, filtering, and adding glyme slowly to the filtrate with stirring until crystals started to form. The yield of CpMo(CO)₃CH₂CH₂ONa-CH₃OCH₂CH₂OCH₃ was 13.9 g, 35%; it was identical by infrared analysis with the material prepared as follows.

Sodium hydride dispersed in oil was added slowly to a solution of $CpMo(CO)_3CH_2CH_2OH$ (1.5 g, 5.2 mmol) in glyme (15 ml) in a nitrogen atmosphere until reaction ceased. The mixture was filtered, and the filter cake was recrystallized from acetonitrile to get $CpMo(CO)_3CH_2CH_2ONa\cdotCH_3OCH_2CH_2OCH_3$ (1.04 g, 50%). Anal. Calcd for C14H19MONaO6: C, 41.80; H, 4.76; Na, 5.71; O, 23.87. Found: C, 42.16; H, 4.98; Na, 6.53; O, 23.50. Treatment of the product with aqueous fluoroboric acid in tetrahydrofuran gave $CpMo(CO)_3C_2H_4+BF_4-$.

CpMo(CO)₃CH₂CH₂OH. A mixture of NaC₅H₅ (10.6 g, 0.12 mol) and molybdenum hexacarbonyl (26.4 g, 0.1 mol) in glyme (200 ml) was refluxed in a nitrogen atmosphere overnight. The resulting mixture was filtered. Ethylene oxide was bubbled through the filtrate for 2.5 hr. The mixture was again filtered. Ether was added to the filtrate to precipitate 26 g of a solid which was separated and then stirred in water (100 ml) for 5 min in a nitrogen atmosphere. Filtration gave CpMo(CO)₃CH₂CH₂OH (4.0 g, 14%), which was washed four times with water and dried at ambient temperature. This product is somewhat light sensitive and decomposes slowly at 25° with ethylene evolution. Anal. Calcd for C₁₀H₁₀O₄Mo: C, 41.40; H, 3.47, Found; C, 41.25; H, 2.89.

 $CpW(CO)_3OCH_2CH_2W(CO)_3C_5H_5$ and CpW-(CO)₃CH₂CH₂OCH₂CH₂W(CO)₃Cp. Three grams (5.9 mmol) of CpW(CO)₃C₂H₄+PF₆⁻ was added to a solution of CpW-(CO)₃CH₂CH₂ONa CH₃OCH₂CH₂OCH₃ (3.0 g, 7.3 mmol) in acetone (30 ml). The mixture was stirred for 30 min and filtered to get CpW(CO)3OCH2CH2W(CO)3Cp ("A" 1.15 g, 22%), a yellow crystalline solid. Anal. Calcd for C₁₈H₁₄O₇W₂: C, 30.45; H, 1.99; O, 15.77. Found: C, 30.80; H, 2.34; O, 15.05. The filtrate from the isolation of "A" was allowed to stand an

additional 30 min and was then refiltered to obtain CpW-(CO)₃CH₂CH₂OCH₂CH₂W(CO)₃Cp ("B" 0.2 g, 4%), also a yellow crystalline solid. Anal. Calcd for C₂₀H₁₈O₇W₂: C, 31.69; H, 2.39. Found: C, 31.37; H, 2.77.

The filtrate from the isolation of "B" separated $[CpW(CO)_3]_2$ on further standing.

CpMo(CO)₃CH₂CH₂OCH₂CH₂W(CO)₃Cp. Acetone (120 ml), $CpW(CO)_3C_2H_4+PF_6-$ (4.5 g, 8.9 mmol), and CpMo-(CO)₃CH₂CH₂ONa·CH₃OCH₂CH₂OCH₃ (4 g, 10 mmol) were mixed in a nitrogen atmosphere. The mixture was filtered after 10 min. Partial concentration of the filtrate gave a pink solid (2.0 g). The filtrate from the isolation of this solid separated 1.3 g of $[CpMo(CO)_{3}]_{2}$ on further standing. The pink solid was recrystallized from methylene chloride-hexane. The lesser soluble fractions were [CpMo(CO)3]2; the more soluble fraction was CpMo-(CO)₃CH₂CH₂OCH₂CH₂W(CO)₃Cp, a cream-colored crystalline solid. Anal. Calcd for C₂₀H₁₈O₇MoW: C, 36.95; H, 2.79; O, 17.23. Found: C, 36.38; H, 2.75; O, 16.85.

CpMo(CO)₃CH₂CH₂OCH₂CH₂Fe(CO)₂Cp. CpMo-(CO)₃CH₂CH₂ONa·CH₃OCH₂CH₂OCH₃ (1.9 g, 4.7 mmol) was added to a mixture of CpFe(CO)₂C₂H₄+PF₆- (1.6 g, 4.6 mmol) and acetonitrile (25 ml). After being stirred for 5 min, the reaction mixture was filtered. Partial concentration of the filtrate gave 1.2 g (53%) of crude CpMo(CO)₃CH₂CH₂OCH₂CH₂Fe(CO)₂Cp. Recrystallization of this by dissolution at room temperature in methylene chloride followed by filtration and dilution with hexamethyldisiloxane gave yellow crystals of CpMo(CO)₃CH₂CH₂OCH₂CH₂Fe(CO)₂Cp (0.5 g, 22%). Anal. Calcd for C19H18O6FeMo: C, 46.18; H, 3.67; O, 19.43. Found: C, 45.96; H, 3.66; O, 19.59.

Acknowledgment. I am grateful to Mrs. Mary Borecki for superb laboratory assistance.

Registry No. [CpFe(CO)₂CH₂CH₂]₂NH₂+PF₆-, 54869-41-9; [CpFe(CO)₂CH₂CH₂]₂NH₂CN, 54869-42-0; CpFe- $(CO)_2CH_2CH_2N(CH_3)_3+PF_6^-,$ 54869-44-2; CpFe-(CO)₂CH₂CH₂NC₅H₅+PF₆-, 54869-60-2; CpFe(CO)₂CH₂CH₂P-(C6H5)3+PF6-, 54869-62-4; CpFe(CO)2CH2CH2CN, 54869-63-5; $CpFe[P(OPh)_3]_2CH_2CH_2CN$, 54869-64-6; СрМо- $(CO)_2COCH_2CH_2NH_2$, 41618-18-2; [CpMo- $(CO)_3CH_2CH_2]_2NH_2+PF_6-$ 54869-55-5: [CpMo-(CO)3CH2CH2]2NH2Cl, 54869-56-6; CpMo(CO)2COCH2CH2N-54869-53-3; $(H)CH_2CH_2Mo(CO)_3Cp$, [CpMo- $(CO)_3CH_2CH_2]_2NH(CH_3)^+PF_6^-, 54869-58-8;$ CpMo- $(CO)_{3}CH_{2}CH_{2}N(CH_{3})_{3}+PF_{6}-, 54869-49-7;$ CpMo-

 $(CO)_3CH_2CH_2NC_5H_5+PF_6^-$ CpMo-54869-51-1; $(CO)_{3}CH_{2}CH_{2}P(C_{6}H_{5})_{3}+PF_{6}-$ 54911-56-7; CpMo-(CO)₃CH₂CH₂CN, 54869-52-2; [CpW(CO)₃CH₂CH₂]₂NH₂+PF₆-, 54869-46-4; [CpW(CO)3CH2CH2]2NH2CN, 54869-47-5; CpW- $(CO)_3CH_2CH_2NH_3+PF_6-,$ 54869-76-0; CpW-(CO)₂COCH₂CH₂NH₂, 41618-20-6; Cp₩-(CO)2COCH2CH2NHCH2CH2W(CO)3Cp, 54869-86-2; [CpW-54869-71-5; $(CO)_3CH_2CH_2]_2NHCH_3+PF_6$ [CpW-(CO)3CH2CH2]2NCH3, 54869-70-4; CpW(CO)2COCH2CH2N- $(CH_3)CH_2CH_2W(CO)_3Cp$, [CpW-54869-85-1; $(CO)_{3}CH_{2}CH_{2}]_{2}N(CH_{3})_{2}+PF_{6}$ 54869-73-7; CpW- $(CO)_3CH_2CH_2N(H)(CH_3)_2+PF_6-,$ 54869-84-0; [CpW- $(CO)_3CH_2CH_2]_2N(CH_3)_2CN$, 54869-74-8: CpW- $(CO)_3CH_2CH_2N(CH_3)_3+PF_6-$ CpW-54869-80-6; (CO)₃CH₂CH₂NC₅H₅+PF₆-, 54869-82-8; CpW(CO)₃CH₂CH₂P- $(C_6H_5)_3 + PF_6^-$, 54869-78-2; $CpW(CO)_3 - \pi - C_2H_3N(CH_3) - \pi - C_2H_3N(CH_3)$ CH2CH2W(CO)3Cp+PF6+, 54869-66-8; CpW(CO)3CH2CH-(CN)N(CH₃)CH₂CH₂WCp(CO)₃, 54869-67-9; [CpW(CO)₂C- (OH)CH2CH2N(H)CH2CH2W(CO)3Cp+]2B12Cl12²⁻, 54869-69-1; CpW(CO)₃CH₂CH₂ONa, 54869-39-5; CpW(CO)₃CH₂CH₂OH, 54869-38-4; CpMo(CO)3CH2CH2ONa, 54869-37-3; CpMo-(CO)₃CH₂CH₂OH, 54869-36-2; CpW(CO)₃OCH₂CH₂W(CO)₃Cp, 54869-35-1; CpW(CO)3CH2CH2OCH2CH2W(CO)3Cp, 54869-34-0; CpMo(CO)3CH2CH2OCH2CH2W(CO)3Cp, 54869-33-9; CpMo-(CO)₃CH₂CH₂OCH₂CH₂Fe(CO)₂Cp, 54869-32-8; CpFe-(CO)₂C₂H₄+PF₆-, 12082-28-9; CpMo(CO)₃C₂H₄+PF₆-, 12083-36-2; CpW(CO)₃C₂H₄+PF₆-, 12083-42-0; CpFe[P(OPh)₃]₂C₂H₄+BF₄-, 33362-33-3; ammonia, 7664-41-7; tetraethylammonium cyanide, 13435-20-6; trimethylamine, 75-50-3; pyridine, 110-86-1; triphenylphosphine, 603-35-0; methylamine, 74-89-5; dimethylamine, 124-40-3.

References and Notes

- (1) $Cp = \eta^{5} C_{5}H_{5}$ throughout this paper.
- (a) A. Rosenblum, and J. Tancrede, J. Am. Chem. Soc., 95, 3062 (1973); (b) M. Rosenblum, Acc. Chem. Res., 7, 122 (1974). (2)
- L. Busetto, A. Palazzi, R, Ros, and U. Belluco, J. Organomet. Chem., (3) 25, 207 (1970).
- (4) A. De. Renzi, G. Paiaro, A. Panunzi, and L. Paolillo, Gazz. Chim. Ital., 102, 281 (1972), and references listed therein; C. D. Holling, M. Green, and D. V. Claridge, J. Organomet. Chem., 54, 399 (1973); C. Åkermark, J. E. Backwall, L. S. Hegedus, and K. Zetterberg, ibid., 72, 127 (1974); C. B. Åkermark, J. E. Backwall, K. Siirala-Hansen, K. Sjoberg, and K. Zetterberg, Tetrahedron Lett., 15, 1363 (1974)
- (5) G. A. Jones and L. J. Guggenberger, Acta Crystallogr., in press
- (6) W. Beck, W. Danzer, and R. Höfer, Angew. Chem., Int. Ed. Engl., 12, 77 (1973).
- (7) R. B. King and M. B. Bisnette, Inorg. Chem., 5, 293 (1966)
- (8) W. H. Knoth, H. C. Miller, J. C. Sauer, J. H. Balthis, Y. T. Chia, and
- E. L. Muetterties, *Inorg. Chem.*, 3, 159 (1964).
 (9) J. K. P. Ariyaratne and M. L. H. Green, *J. Chem. Soc.*, 2976 (1963),
- reported the preparation of this compound by a different route. (10) W. P. Giering, M. Rosenblum, and J. Tancrede, J. Am. Chem. Soc., 94, 7170 (1972).
- M. L. H. Green and P. L. I. Nagy, J. Organomet. Chem., 1, 58 (1969).
 M. Cousins and M. L. H. Green, J. Chem. Soc., 889 (1963).
 E. O. Fischer and K. Fichtel, Chem. Ber., 94, 1200 (1961).

- (14) A. N. Nesmeyanov, Yu. A. Chapovsky, and Yu. A. Ustynyuk, J. Organomet. Chem., 9, 345 (1967).